理士蓄电池DJW12-24 DJW系列产品简介
理士蓄电池DJW12-24 DJW系列产品简介
理士蓄电池长时间使用放不出电来是有哪些原因造成的。。。
1、理士电池的正极板软化
电池的正极板是由板栅和活性物质组成的,其中活性物质的有效成分就是氧化铅。放电的时候氧化铅转为硫酸铅,充电的时候硫酸铅转为氧化铅。氧化铅是由α氧化铅和β氧化铅组成的,在2种氧化铅中以其中α氧化铅荷电能力小但是体积大,比β氧化铅坚硬,主要起支撑作用;β氧化铅刚好相反,荷电能力大但是体积小,比α氧化铅软,主要起荷电作用。α氧化铅是在碱性环境中天生的,在电池内部一旦泛起介入放电以后,充电只能够出产β氧化铅。正极板的活性物质是多孔结构的,就与电解液——硫酸的接触面积来说,多孔结构是平面的数十倍。假如α氧化铅介入放电以后,重新充电以后只能够天生β氧化铅,这样就失去了支撑,不仅仅会产生正极板活性物质脱落,而且脱落的活性物质还会堵塞正极板的微孔,导致正极板介入反应的真实面积下降,形成电池容量的下降。后备电源的电池使用年限要求比较严格,对电池的容量要求比较宽,因此后备电源使用的电池α氧化铅和β氧化铅比例比深轮回的动力型电池大一些。为了减少α氧化铅介入放电,一般控制放电深度仅仅为40%。跟着电池的使用时间的增加,电池的容量下降,新电池放电40%的电量,对于旧电池来说必定超过40%的,所以旧电池就相称于放电深度深,理士电池的正极板软化也会被加速。所以,电池的容量寿命曲线的后期下降速率远远高于中期。电池容量越小,放电深度越深,α氧化铅损失也越多,正极板软化也越严峻,导致电池容量下降越快,形成了恶性轮回。
这样,电池的放电深度需要严格控制。实现这个控制的是靠基站的电源治理系统的设置。目前控制电池放电深度的主要尺度仍是一次放电量和放电电压。这样,尽可能避免在应急的时候强制放电,而应该按照放电量来增加电池的容量。
2、理士电池的正极板侵蚀
理士蓄电池DJW12-24 DJW系列产品简介正极板的板栅中的铅在充电过程中或被氧化为氧化铅,并且不能够再还原为铅,形成正极板侵蚀。而氧化铅的体积比铅的体积大,形成体积线性增加变形,使正极板活性物质与板栅脱离,导致正极板失效。而过充电会严峻加速正极板侵蚀。我们一般认为不会产生过充电状态。实际上,基站的浮充电压假如跟不上环境温度的上升而进行下降的补偿,过充电就产生了。如基站的空调不够或者损坏,电池的过充电也会产生。这样理士电池的正极板板栅在不同的使用前提下会有不同的侵蚀速度。长三角和珠三角地区的正极板侵蚀也会比内地严峻,这与电池的使用环境温度关系紧密亲密。
又一种对零地电压的误解
另有一种对高频机型UPS的指责是:理士蓄电池DJW12-24 DJW系列产品简介当零线断开时,高频机型UPS的零地电压升高。这又是一个误区:众所周知,零地电压就是零线上的电压。在图4中零地电压就是电源电流在负载上作完功后,返回到N点时与零线电阻形成的压降。假如零线在点d断了,由于原来的电流也没向d点流动,所以如果负载不变,那么此时的零线电压也没变,为什么测量出来高了呢?实际上是测量的错误,因为如图4所示,既然零线在d点断了,那么输出的零点也就悬空了,测量一个悬空点与地之间的电压,这本身就是个常识问题。比如搬来一个蓄电池放到桌子上,用电表测量蓄电池的负极到地的零地电压,也会有数值的,尤其是当空气湿度比较大的时候。而且用不同的仪表测出的结果也不同,这是其一。其二,工频机型UPS的输出变压器由于其次级已经接地,所以零线断开后(等于没断)零地电压不变。其三,零地电压并不是干扰源,二也没有传递零地电压到负载的途径。所以在零地电压上指责高频机型UPS是没有必要的。